Views: 63 Author: SEPPE Publish Time: 2021-03-02 Origin: SEPPE Technologies
Bauxite Used for Aluminum Production
Bauxite is the principal ore of aluminum. The first step in producing aluminum is to crush the bauxite and purify it using the Bayer Process. In the Bayer Process, the bauxite is washed in a hot solution of sodium hydroxide, which leaches aluminum from the bauxite. The aluminum is precipitated out of solution in the form of aluminum hydroxide, Al(OH)3. The aluminum hydroxide is then calcined to form alumina, Al2O3.
Aluminum is smelted from the alumina using the Hall-Heroult Process. In the Hall-Heroult Process, the alumina is dissolved in a molten bath of cryolite (Na3AlF6). Molten aluminum is removed from the solution by electrolysis. This process uses an enormous amount of electricity. Aluminum is usually produced where electricity costs are very low. Much of the aluminum used in the United States is produced in Canada using hydroelectric power.
Use of Bauxite as an Abrasive
Calcined alumina is a synthetic corundum, which is a very hard material (9 on the Mohs Hardness Scale). Calcined alumina is crushed, separated by size, and used as an abrasive. Aluminum oxide sandpaper, polishing powders, and polishing suspensions are made from calcined alumina.
Sintered bauxite is often used as a sand-blasting abrasive. It is produced by crushing bauxite to a powder and then fusing it into spherical beads at a very high temperature. These beads are very hard and very durable. The beads are then sorted by size for use in different types of sandblasting equipment and for different sandblasting applications. Their round shape reduces wear on the delivery equipment.
Use of Bauxite as a Proppant
Sintered bauxite is also used as an oil field proppant. In drilling for oil and natural gas, the reservoir rock is often fractured by pumping fluids into the well under very high pressures. The pressure builds up to very high levels that cause the shale reservoir rock to fracture. When fracturing occurs, water and suspended particles known as "proppants" rush into the fractures and push them open. When the pumps are turned off, the fractures close, trapping the proppant particles in the reservoir. If an adequate number of crush-resistant particles remain in the reservoir, the fractures will be "propped" open, allowing for a flow of oil or natural gas out of the rocks and into the well. This process is known as hydraulic fracturing.
Citation information comes from Geology.com